Generative Oversampling Method for Imbalanced Data on Bearing Fault Detection and Diagnosis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative Oversampling for Mining Imbalanced Datasets

One way to handle data mining problems where class prior probabilities and/or misclassification costs between classes are highly unequal is to resample the data until a new, desired class distribution in the training data is achieved. Many resampling techniques have been proposed in the past, and the relationship between resampling and cost-sensitive learning has been well studied. Surprisingly...

متن کامل

Oversampling Method for Imbalanced Classification

Classification problem for imbalanced datasets is pervasive in a lot of data mining domains. Imbalanced classification has been a hot topic in the academic community. From data level to algorithm level, a lot of solutions have been proposed to tackle the problems resulted from imbalanced datasets. SMOTE is the most popular data-level method and a lot of derivations based on it are developed to ...

متن کامل

Synthetic Protein Sequence Oversampling Method for Classification and Remote Homology Detection in Imbalanced Protein Data

Many classifiers are designed with the assumption of wellbalanced datasets. But in real problems, like protein classification and remote homology detection, when using binary classifiers like support vector machine (SVM) and kernel methods, we are facing imbalanced data in which we have a low number of protein sequences as positive data (minor class) compared with negative data (major class). A...

متن کامل

Adaptive Oversampling for Imbalanced Data Classification

Data imbalance is known to significantly hinder the generalization performance of supervised learning algorithms. A common strategy to overcome this challenge is synthetic oversampling, where synthetic minority class examples are generated to balance the distribution between the examples of the majority and minority classes. We present a novel adaptive oversampling algorithm, VIRTUAL, that comb...

متن کامل

SPSO: Synthetic Protein Sequence Oversampling for Imbalanced Protein Data and Remote Homology Detection

Many classifiers are designed with the assumption of wellbalanced datasets. But in real problems, like protein classification and remote homology detection, when using binary classifiers like support vector machine (SVM) and kernel methods, we are facing imbalanced data in which we have a low number of protein sequences as positive data (minor class) compared with negative data (major class). A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Sciences

سال: 2019

ISSN: 2076-3417

DOI: 10.3390/app9040746